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ABSTRACT 

We study the mixing properties of equilibrium states Ft of non-Markov 
pieeewise invertible maps T : X --> X ,  especially in the multidimen- 

sional case. Assuming mainly H61der continuity and that the topological 
pressure of the boundary is smaller than the total topological pressure, 

we establish exponential decay of correlations, i.e., 

f p . ~ , o T n d p - / x P d l t ' / x ~ / ' d  # < _ C . e  -an  

for all HSlder functions ~ ,4 ,  : X --4 F~, all n ~ 0 and some C 
c~, o~ ~ 0. We also obtain a Central Limit Theorem. Weakening the 

smoothness assumption, we get subexponential rates of decay. 
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0. I n t r o d u c t i o n  

Our goal is to generalize ergodic and statistical properties of equilibrium states, 

which are well-known in dimension one [LY, HK, R, Kel,  So, Go], to a natu- 

ral multidimensional setting. Several questions in this regard have already been 

considered (existence and characterization of equilibrium states [Bu2], construc- 

tion of conformal measures [BPS], absolutely continuous invariant measures [Bu0, 

Bul,  Bu3, Co, GB, Sau] or zeta functions [BuKe]), sometimes with surprising 

results [Bu4, T3]. 

In this paper we study the speed of mixing of equilibrium states and prove 

that  it is exponential. This implies, e.g., the Central Limit Theorem. 

We first consider HSlder continuous weights for simplicity and then move on 

to the more general case of summable moduli of continuity [Se] (which was the 

setting for the previous works [Bu3, BPS]) relying on an abstract result proved 

in a companion paper [BUM@ 

Our setting will be the following. (X, Z, T, g) will be a weighted piecewise 

invertible map, i.e.: 

,, X = U z e z  z is a locally connected compact metric space. 
• Z is a finite collection of pairwise disjoint, bounded and open subsets of X. 

Let Y -- U z e z  Z. 
• T:  Y --+ X is a map such that each restriction TIZ, Z E Z, coincides with 

the restriction of a homeomorphism Tz: U -+ V with U, V open sets such 

that U D 2, V D T(Z).  

• g : X - + N .  

T will be assumed to be non-contracting, i.e., such that for all x, y in the same 

element Z C Z, d(Tx, Ty) >_ d(x, y). 

Also Z will be assumed to be generating, i.e., lin~_~oo diam(Z n) = 0 where 

Z n denotes the set of n-cylinders, i.e., the non-empty sets of the form 

[ A 0 .  • • An-l] : =  Ao N . . .  0 T-n+lAn_l 

for Ao . . . . .  An-1 C Z. 
Finally the boundary of the partition, OZ = U z c z  Oz, will play an important 

role in our analysis. In particular, we shall assume "small boundary pressure" 

(see below), a fundamental condition which already appeared in [Bu2, Bu3, BPS]. 

A basic example is given by the multidimensional/3-transfo~nations [Bu0], i.e., 

maps T: [0, 1] d --+ [0, 1] d, T(x) = B . x m o d Z  d with B an expanding affine map 

on R d. An interesting choice of weight is the constant g(x) = I det B[ -1. 

These systems usually have plenty of invariant probability measures, some 

of them rather irrelevant such as those supported on periodic orbits. A classical 
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way to select "interesting" measures is through the following variational principle 

[DGS]. One considers equilibrium states, i.e., invariant probability measures which 

maximize the measure-theoretic pressure: 

h(#, T) - / y  loggd# 

(h(#,T) is the entropy o f p  see [DGS]). 

In our piecewise, multidimensional and expanding setting, existence and 

uniqueness of these measures have been studied in [Bu2] and [BPS]. Furthermore, 

in [Bu2] such measures have been given the alternative and more "geometric" 

characterization of being exactly the invariant probability measures absolutely 

continuous w.r.t, a "conformal measure". Recall that a conformal measure is a 

not necessarily invariant, probability measure on X, such that the Jacobian of 

T w.r.t, this measure is equal to e-P(X'T)g -1 where P(X, T) is the topological 

pressure defined below. This conformal measure can be given (like the Lebesgue 

measure if g = I det T'1-1) or constructed from the weight g [BPS]. 

In the example given above (multidimensional ~-maps with g = I det BI-1),  

the conformal measure is just Lebesgue measure and thus the equilibrimn states 

are tile absolutely continuous invariant probability measures, which can indeed 

be considered interesting. 

STATEMENT OF RESULTS. To formulate the crucial "small boundary pressure" 

condition, we need first some definitions. 

The topo log ica l  p r e s s u r e  [DGS] of a subset S of X is 

P(S, T) = lira sup 1 log E g(~)(A) 
n ~ ' o o  n A E Z  n 

A n s ¢ ¢  

where g(n)(A) = sup~eA g(x)g(Tx)...g(T~-~x). 
The smal l  b o u n d a r y  p r e s s u r e  condition is 

P(OZ, T) < P(X, T). 

This inequality is satisfied in many cases. In particular, if T is expanding and 

X is a Riemannian manifold and the weight is I detT'(x)1-1 or close to it, then 

it is satisfied: (i) in dimension 1, in all cases; (ii) in dimension 2, if T is piecewise 

real analytic [Bu3, T1]; (iii) in arbitrary dimension, for all piecewise affine T [T2] 

or for generic T [Bul, Co]. See, however, [Bu4] for an expanding counter-example 

in dimension 2. 
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In our favorite example (multidimensional/3-transformations, see above), the 

inequality is satisfied for arbitrary g as soon as 

inf----g < A+ 

with A+, resp. A_, the largest, resp. the smallest, modulus of the eigenvalues of 

the linear map corresponding to the/3-transformation. Clearly, this is satisfied 

for g = coast = [ det B[ -1. 

0.1 .  THE EXPANDING AND HOLDER CONTINUOUS CASE. Reca l l  t h a t  a 

c o n f o r m a l  m e a s u r e  for ( X , T , g )  is a probability measure v such that  
dv o T / d u  = e-P(X'T)g. 

MAIN THEOREM: Let (X, Z, T, g) be a weighted piecewise invertible dynamical 

system. Assume that: 

H1. T is expanding, i.e., there is some A > 1 such that for all x, y in the same 

element of  Z,  d(Tx,  Ty)  > A. d(x, y). 

H2. g is Hhlder continuous with exponent 7 and is positively lower bounded. 

Let 
If(x) - f(y)] 

K ( f )  = m a x  s u p  
z e z x ~ v e z  d(x,y)~ 

where 7 is some H61der exponent of  g. 

H3. The boundary pressure is small: P(OZ,  T) < P ( X ,  T). 

H4. There is a conformal measure v such that T a X  C supp(v) (rood 0) for large 

enough n. 

Then, T admits a finite number of  ergodic and invariant measures, # 1 , . . . ,  #r, 

absolutely continuous w.r.t, v with the following properties. Any  invariant prob- 

ability measure absolutely continuous w.r.t, u is a convex combination of  these 

measures. Each tti is exponentially mixing up to a period p~, i.e., #~ can be 
1 V'p~-I Tj" o with p~. o o T~* t~i and, for all n > 1, written n A.~j=0 * kei = Pi - 

with constants C < co and ~ < 1 depending only on (X, Z ,  T, g), for any measur- 

able functions ~, ~: X --+ • such that ¢ is bounded and ~ is 7-HSlder continuous. 

We also obtain: 
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CENTRAL LIMIT THEOREM: Under the same conditions, i f  ~ is 7-H61der contin- 

uous and satisfies f x ~ d#° = O, then setting 

a 2 lira 1 / x ( n - ~  )2  = -- ~ o T k d# ° 
n - -~  oo  17, k = O  

1 n--1 T k we have ~ ~k=o  ~ o ~ N(0,  a), where ~ is the convergence in law and 

N(O, a) is the normal distribution with mean zero and variance a (the Dirac 
2 0 measure at 0 if  a --- 0). Moreover, ~ = 0 iff ~ = ~/, - ¢ o T for some ¢ C L (#i).  

0.2. THE GENERAL CASE. The driving factor is the smoothness of the weight 

g as measured by the following sequence: 

wn(g) = sup sup log g(x___)) 
z~zn x,yeZ g(Y)" 

In fact, it is convenient to assume only that Wn(g) is not less than the right hand 

side of the above equation. 

Such a sequence defines the following functional space. It is the set of functions 

on X such that 

sup sup I~(x) - ~(Y)l -< K .  ~ W q ( p ) .  
Z E Z P  x , y E Z  q>p 

We set K(9~) to be the infimum of all numbers h" such that the above equation 

holds for all p _> 1. This condition together with this functional space were 

considered by B. Sehmitt [Sc, KMS]. 

We may now state: 

MAIN THEOREM (general version): Let ( X , Z , T , g )  be a weighted piecewise 

invertible dynamical system. Assume that: 

H1. T is non-contracting. 

H2. g satisfies ~ > 1  w,~(g) < oo and that it is positively lower bounded. 

H3. p(oz, T) < P ( X ,  T). 

H4. There is a conformal measure v such that T ~ X  C supp(v) (mod0) for large 

enough n. 

Then, T admits a finite number of ergodic and invariant measures, #1 , . - . ,  #r, 

absolutely continuous w.r.t, v. Each #i is mixing up to a period Pi, i.e., #i can 
1 ~-~Pi--1 J 0 P i .  0 0 T~* ~*i = #~ n be written ~ L,y=o T~ Pi with and, for all > 1, 

f x  ~ °  Tnp~ "~ 'dP° -  I x  wdp° Ix ~/'d#° <- (sup[~[ + K(~) )  " [[~][L'(~°)Un 
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for any measurable functions ~, ~: X -+ • such that ¢ is bounded and K ( ~ )  < oe 

The sequence (un)~>l depends on (T,g) and goes to zero with a speed which 

can be made explicit: 

1. i f  wn(g) = O(p ~) for some p < 1, then Un = 0 ( ~  n) for some ~ < 1; 

2. i f  ~n(g) = O(n - a )  for some a > 1, then Us = O(n-(a-1)) ;  

3. if~n(g) = O(e -n~) for some 0 < a < 1, then Un = O(e -n~-~) for arbitrary 

¢ > 0 .  

We also obtain: 

CENTRAL LIMIT THEOREM (general version): Under the same conditions, i f  one 

also has ~n>_, un < c~, for all ~ such that K(~)  < oo and f x  ~dP° = O, setting 

a2 lim l /x  n-' )2 0 
:~-~oo-n ( ~ ° T k  d# 

" k = O  

X:k=0 ~ o ~ Af(O, ~r), where ~ is the convergence in law and we have ~n n-1 T k 

Af(0, a) is the normal distribution with mean zero and variance a (the Dirac 
2 0 measure at 0 i f  c, = 0). Moreover, c~ = 0 iff ~ = 5' - ¢ o T for some ¢ E L (#~ ). 

OUTLINE OF THE PAPER. The rest of the paper is devoted to the proof of the 

above theorems. 

First we define a Markov extension -or  tower- ()~', 5 5) 5 la Hot'bauer-Keller. 

Then we check that  the return t ime/~  with respect to a slightly enlarged basis 

) ( ,  of this tower satisfies an exponential estimate with rate exp - (P(X,  T) - 

P ( 0 Z ,  T)). Finally, we build from this Markov extension an abstract tower in 

the spirit of L.-S. Young [Y0]. We show that the a.c.i.m.'s on X lift to a.c.i.m.'s 

on this tower. From this, the theorems above follow from an abstract result which 

is proved in a companion paper [BuMa] dealing with the non-Markov case. In the 

expanding and HSlder continuous case, they also follow from a slight adaptation 

of [Y0]. 

COMMENTS. 

• Our Main Theorem generalizes results well-known in the globally expanding 

case (see, e.g., [Bo]) or in the piecewise expanding one-dimensional setting 

(see [Kel, LSV] and the references therein). The non-HSlder (piecewise in- 

vertible) case is new, even in the one-dimensional setting with g = I det T~I 

- -we remark that the claim in [Go] that (in dimension 1 and with g = 

I det T'1-1) the decay of correlations is always exponential rests on a faulty 

lemma. 
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The special case g = IdetT~1-1, with g HSlder continuous, has been 

considered in a multidimensional setting (under a slightly more restrictive 

condition than the small boundary pressure condition) in [Bu3, Sau]. 

• The assumption of small boundary pressure (H3) is natural. Indeed it 

reduces, for instance, in dimension 1, to a standard "spectral gap" condi- 

tion. It  also implies the conditions appearing in [Bu3, Sau] by a remark of 

M. Tsujii. 

• The existence of a conformal measure (H4) is automatic  in the case with 

g = I detT~t -1 (Lebesgue measure is enough). In the general case, it was 

proved in a similar setting by J. Buzzi, F. Paccaut and B. Schmitt [BPS]. 

• L. S. Young [Y2] has asked how one could control the upper floors of the 

tower for equilibrium states. We prove here that  they are controlled in ther- 

modynamical  terms: their conformal measure decreases like the quantity 
e -(P(x'T)-P(°z'T))n - -see  Proposition 1.1. 

• By going to a Markov extension, we avoid spaces of discontinuous functions, 

i.e., spaces of functions with bounded multi-dimensional variation. This is 

already a significant technical gain in the case of Lebesgue measure (g = 

IdeA T~1-1) and seems necessary for more general weights as the classical 

functional spaces are no longer adapted and tailored ones (see [Kel, Sau]) 

become too difficult to control ([P] studies, however, a promising functional 

space). 

• Our results are deduced from similar statements about a tower extension 

in the spirit of L.-S. Young (see [Y0, Y1]). These statements,  quoted at the 

end of our proof, are proved in [BuMa]. 

ACKNOWLEDGEMENT: The authors are grateful to program ESF/PRODYN 

which has partially supported the International Conference on Dynamical 

Systems, Abbey of "La Bussi@re" where most of this work was carried out. We 

thank the referees of a first version of this paper for their remarks. 

1. T h e  M a r k o v  e x t e n s i o n  

We define a Markov tower extension ()~', T) in the vein of F. Hofbauer [Ho] and 

G. Keller [Ke2] and then prove that  the pressure of the boundary provides an 

exponential estinmte on the tail statistics of the return times to the basis. 

1.1. CONSTRUCTION. Let ( X , Z , T , g , v )  be as in the Main Theorem. Let 

)(0 = {(x, Z): x ~ Z and Z E Z}. Recall that  Y = [.Jzez Z is the domain of T. 
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For x E Y A T - 1 Y  and A C X, set 

T(x, A) = (Tx, T(A) n Z[Tx]) 

where Z[x] is that element of Z which contains x. 

Set 5( = Un>o 5bn()(0)" Remark that 

f ( =  U /g with D × {D} and D = { T n Z : n > O a n G Z E Z n + I } .  
DED 

Thus, .f( is a countable, disjoint union of (sets naturally isomorphic to) subsets 

of X. 

79 has a natural graph structure: D --+ D'  iff D ~ = T(D) M Z for some Z E Z. 

1.1.  THE STATISTICS OF RETURNS. W e  shall consider returns to an enlarged 

basis of the Markov extensions: f( ,  = T N* Xo for some N,. X,  can also be seen 

as the disjoint union of 79,, the collection of the sets TNz ,  Z E Z N*+I. 

The figure below illustrates why points not too close to the boundary return 

to -g(0, explaining the idea behind the next proposition. 

points returning 

points going up 

How points return to Xo. 

Z is a grid of small squares and we have drawn some set A and its 

image and pointed out the behavior of T(x, A) for x E A. 
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PROPOSITION 1.1: For each 6 > O, if N, < oo is large enough, then for 

.~'. = CN-.~:0,  

the re turn  t ime to X. ,  /~(5:) = inf{n > 1 : ibn(3:) E .Y.}, satisfies, for each 

D C T L  

v({x ¢ D :  R((x,  D)) > n}) _< const . e x p [ - n ( P ( X ,  T) - P(OZ, T) - 6)1 

for some positive number const < oo. This number depends on D. 

Proo~ Let 6 > 0 and D C /?. Observe tha t  D being of the form 

Tk(Ao N .. .  ~ T-kAk),  P(OD, T) < P(~)Z, T). Thus, for N large enough, for 

all n >_ 0, 

(1) zez~ g(n)(z)<ehN.e(P(OZ'T)+~)n_ and ( n ) [2n /N]  <- ehn" 

ZN(ODUOZ)~O 

[.] is the integer part .  

Set 

el  = rain {d(Z, A) : 0 < n < N + 1, Z E .~n such tha t  Z A A = 0}. 
ne{OZ,OD} 

e l  > 0 aS each Z n is finite. Obviously, 

d(x, 0Z[~]) < cx ~ V0 < ~ < X + i z - [ z ]  n o z  ¢ 0 

as soon as Z '~ [x] is well-defined. 

Let c2 > 0 be such that  for all x E X there is a connected F C X with 

B(x, c2) C F C B(x, ~1). This exists because of the local connectedness and the 

compactness of X.  

For x C D and n _> 0, let 

and set 

pn(X) : :  sup{/" > 0 :  e ( T n x ,  l ") C T~(D M zn+l [x ] )}  

R(x) := min{n >_ 0 :  p~(x) >_ c2}. 

Choose N.  < oo so large tha t  the diameter  of the par t i t ion Z. g*+l is less than  

e2- Let  us observe tha t  

[~((x, D)) < n(x) + N.. 
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Indeed, as 

zN*+I[TR(X)x] C B(TR(X)x ,  c2) C TR(x) (D N zR(x)+l[x]) 

we have 

~R(x)+N. (X, D) = (TR(x)+N*x~ T R(x)+N* (ZR(x)+N*+I[x] N D))  

= (TR(x)+N*x, T ~* (zN*+I[TR(X)x] n TR(X)(D n ZR(x)+I[x]))) 

= (T R(x)+N* x, T N* zN*+I[TR(X)X]) 

= ~ x .  (TR(=)x, Z[Ta~)x] ) • TX.2o =: 2 . .  

It is therefore enough to prove the exponential estimate for 

. ({x e D:  R(x) > n}). 

CLAIM: For every x E D such that  R ( x )  > n, there exists a finite sequence o f  

t imes no -- 0 < nl  < " "  < nr = n such that, for all 0 <_ i < r, 

2n 
(2) r <_ ~ -  + 1, 

(3) Zn'+'-n'[Tn'x] n (aZ U OD) :/: O, 

where N was defined in (1). A n  interval [ni, hi+l) satisfying eq. (3) is said to be 

a s h a d o w i n g  interval .  

Let us see that the claim implies the proposition. Let 

C = s u p  sup sup --g(n)(x) < s u p e x p £ w k ( g )  < _ e x P E w k ( g )  < 0o. 
n Z E Z  n x , y E Z  g(n)(y) - n k=l k>l 

Z6Z n 
3 ~ E Z  s. t .  R ( x ) > n  

E C"  e-nP(X'T)g(n)(x)  • v ( r n x )  
zEzn 

3 ~ E Z  s. t .  R(x)>n 

(we used the fact that v is conformal). Hence the claim implies 

(2n/N)+l r-1 

"({R>n}) <-Ce-nP~x'~ ~ Z I-[ ~ g(°'+~-n')(z) 
r = l  n o , . . . , n r  i~O ZEZni+l-ni 

2n(ozuOD)#O 

< C . e - n P ( X , T , ( N  + I ) (  n x~,o#N'~n(P(OZ,T)+5) 
- kI-~])" " 

~ C .  e -n(P(X'T)-P(OZ'T)-55) 

We compute 

~({R > n}) < Z ~(z) 
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which is the statement of the Proposition (up to substituting 5/5 for 5). Thus, 

we only need prove the claim by building the required times ni. 

The claim will follow from the following combinatorial Lemma. 

LEMMA 1.2: Let n > 1 and let C be a cover of [0, n) by (integer) subintervals 

[a, b) which are long in the sense that b > min(a + N, n). Then there exists 

a partition of [0, n) into at most 2n /N  + 1 subintervals, each of which is the 

beginning of some interval in C. 

Deferring the proof of this lemma, we just have to see that  it may be applied, 

i.e., [0, n) is covered by long shadowing intervals. We prove that  an arbi trary 

integer k E [0, n) is contained in a long shadowing interval. 

As k < n < R(x),  B(Tkx,¢2) ~ Tk(D N ZP+I[x]). By the choice of ¢2, there 

exists a connected set F with B(Tkx ,  c2) c F C B(TkX,¢l) .  Hence F must meet 

the boundary of TkZk+l[x]. Let u be a point in the intersection. Obviously, 

u = Tk-tlZk-~+l[T~x](v ) for some 0 < ~ < k and v E OZ. 

[~, k + 1) is a shadowing interval. If it is long, there is nothing else to show. 

Thus, we assume that  it is not long: k - g < N. 

As the map is non-contracting, d(Ttx,  v) < d(Tkx, u) < cl.  Hence, 

d(Zm[T~x], OZ) < ~1 with m = min (g ,  n - ~). 

By the choice of ¢~, this implies Zm[Tex] N OZ # O. [~,~f + m) ~ k is the long 

shadowing interval we were looking for. This concludes the proof of the claim 

and of the proposition, modulo the proof of Lemma 1.2, to which we now turn. 
| 

Proof of Lemma 1.2: The sought-for parti t ion will be 

[nl, n2), [n2, n3) . . . . .  [nimax--1, n i .... ). 

Let nl  = 0 and ml  be maximum with [0, ml )  E C. We define the sequences 

n i and mi inductively. 

Assume ni-1 and mi-1  are defined. If hi-1 = n, set imax = i - 1  and terminate. 

If hi-1 < mi-1  = n, set /max = i, nimax = mi-1 and terminate. Otherwise, 

consider the intervals in C containing mi-1  (there exists at least one such interval 

containing mi-1 by the covering assumption). Pick one with the right endpoint 

as far to the right as possible. Denoting this interval by [a, b), set ni := a and 

mi := b. This completes the definition of the ni 's  and mi's.  

Observe that  for all 1 < i < /max, mi - ni > N as [ni, mi) E C, except if 

m i : n .  
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Also, for 1 < i < /max, ni+l > mi-1, because otherwise [ni+l, mi+l) ~ mi-1 
and mi < mi+l would contradict the choice of m~. 

Therefore, for all 0 < i </max, 

n i + l  ) mi-1  ~_ hi-1 + N.  

This proves the Lemma. | 

2. The inducing tower 

Working from the previous Markov extension .~, we define another tower de- 

scribing the map induced by T on )( .  following L.-S. Young's philosophy [Y1]. 

Let A0 = .~r. be the enlarged basis of the Markov tower previously defined 

with N. large enough both w.r.t. Proposition 1.1 (with 5 < P(X,  T) - P(OZ, T)) 
and hypothesis (H4) (so that T N*X C supp ~). 

We shall write x for a point of Ao C X × D. 

Let (A0, j)jeN be the partition of Ao obtained by dividing it first into level sets 

{x :/~(x) = r} and then according to 2: r+l on the r th level set, i.e., (A0,j)je N is 

the coarsest partition of Ao such that /~(x)  and Zh(x)[x] are constant on atoms. 

We define 

A~ = {(x,~)/x e Ao and/~(x) > ~}. 

The tower A C X x ~P × N is the disjoint union of the Ae's. We will denote by 

Ae,j C Ae the set of (x, e) such that (x, 0) belongs to Ao,j. The Ae,j's for t? E N, 

j e N, form a partition of A which we denote by P. 

Let F: A ~ A be defined in the following way: 

F ( x , ( ) = ( x , e + l )  i f e + l < / ) ( x ) ,  
= (TR(X)x, 0) otherwise. 

We remark that we do not assume that the images FRAo,j are the whole basis 

Ao. That is why we have to introduce the partition {B1, . . . ,  Bp} of A0 generated 

by {FRA0,j : j E N}. It is finite because each FRAo,j corresponds to some union 

of elements of ~ , ,  which is finite. 

Finally, we lift the probability measure ~ on X to a measure ~ on A defined 

by 
~(S × {D} x {e}) = u(S). 

Since A0 is a finite union of D, D • :D, ~(A0) < ec. Also, by the choice of N.,  

supp(~) = A. 
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We define the following metric on A: 

d o ( x , y ) = - C . e x p  ~ ~zj(g), 
j>s(x,y) 

where s(x, y) = min{k >_ 0 : Fk(x),  Fk(y) are not in the same element of P}  and 

C = exp~-~j_>l wj(g). This last constant is introduced to have property (A.III) 

below. 

Let us summarize the crucial properties of the tower. 

(A.I) E x p o n e n t i a l l y  smal l  u p p e r  floors.  Because of Proposition 1.1, 

~({x c Ao/[~(x) > 2}) _< const-~  

(A.II) 

(A.III) 

for some 0 < ? < 1. In particular, ~(A) = y ~  5(Ae) <_ const ~ e  ~/e < oc. 

Moreover, the support of i is A: this follows from our construction and 

the fact that the support of v contains T N* X .  In what follows, we assume 

that ~ has been normalized, i.e., ~(A) = 1. 

G e n e r a t i n g  p a r t i t i o n .  The partition P generates under F,  i.e., the 
• . c ~  - n  • partition V,=o F P is the partition into points. In particular, do defines 

a metric on A. 

B o u n d e d  d i s t o r t i on .  Let J F  be the Jacobian of F with respect to ~. 

Obviously, JF(x ,  ~) = 1 if ~+ 1 < R(x) and JF(x ,  R(x) - 1) = gft(x)(x). 
If x, y are in the same Bj, we can define their paired pre-images x ~ and 

y~ as follows: F ' x '  = x, F'~y ~ = y and Fk(x  ~) and Fk(y ~) belong to the 

same element of P for 0 < k < n. We have 

I JFn(x ' )  1 < do(x,y). 
JFn(y ' )  - 

JFn(x ') Indeed, recalling that C = ~ j > _ l  wJ(9) ~-- log JFn(y'), 

JF'~(x ') JFn(x ' )  1 < C" log < C .  Z wj(n). 
- JFn(y,)  - 

j~n-l-s(x,y) 

(A.[V) M a r k o v  p r o p e r t i e s .  {FR(A0,j) : j >_ 0} is finite and consists only of 

sets with positive measure. Moreover, each FRAo,j  is a union of some A0,p. 

2.1. LIFTING A.C.I.M.'S. To analyze an arbitrary, ergodic a.c.i.m, on X we first 

have to lift it to the inducing tower A: 
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PROPOSITION 2.1: i f #  is an ergodic u-a.c.i.m, on X ,  then there exists an ergodic 

P-a.c.i.m. ~ on A projecting to # by the semi-conjugacy 7r : A --~ X ,  ~r(x, D, £) = 

T%.  

To prove this, we begin by finding a not necessarily invariant, probability 

measure fi0 on A with projection on X absolutely continuous w.r . t .p .  We set 

f~o --- 12,n~-l(s)  • P, where S is invariant and such that p(S) = 1 and # ' (S)  -- 0 

for all other ergodic u-a.c.i.m.'s (there can be only countably many measures 

which are pairwise singular and absolutely continuous w.r.t, a given measure). 

We have to check that  this f~o can be normalized. Because of (A.I), 7r,(~) < 

C - , ( X )  < oc. We have to see that f~o is not zero, i.e., P(.~, A 7r-1(S)) > 0. 

But this follows from the invariance of S and the fact that the ~-a.e. point of .~" 

eventually enters ) ( ,  by Proposition 1.1. 

Thus we can normalize ft0. 

Now, we claim that  we can take ft to be any weak* limit point, say ft, of the 
1 n--1 

sequence ; ~k=o  F~/)0. 
Clearly fL is F-invariant. Let us show that /~ is P-absolutely continuous. For 

this we consider the sequence of the corresponding densities. Introducing the 

transfer operator for (F, P), 

f(y) 
JR(y) 

yEF-t(~c)  

n - 1  where J F  is the Jacobian of F w.r.t, i ,  these densities are ~ ~k =o  £kdYto/d5 

(recall that  dfto/dP = C). The absolute continuity will therefore follow from the 

CLAIM: There is a constant K < ~ such that for all z E A, n >_ O, (t;'~l)(x) 

< K .  

The claim together with P(A) = 1 allows the application of the Lebesgue 

dominated convergence theorem to see that the p-absolute continuity of the pro- 

jections of the measures F,k/;o passes to the limit/5. For the same reason, ~ is 

a probability measure. Finally, as 7r, p < < ' u  and 1r,t~(S) = 1, 7r, B <<  #. By 

ergodicity, this implies :r, ft = #, proving the Proposition, except for the claim. 

We need some facts. Recall that ~ is the partition of A obtained by translation 

from the partition of A0 according to the return t ime/~  and ZR-itinerary. For 

k E N and x ~ A, Ck(x) denotes the k,P-cylinder which contains x. 

LEMMA 2.2: There exists C < oc such that for any f C N, x E Ae and k c N 

with Fkx  E Ao, 
1 

C-15(Ck(x))  <_ jFk(x------ ~ < CP(Ck(x)).  
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Proo~ Let x G Ae such that Fk(x)  E Ao. The Markov property and the large 

image property (A.IV) imply that ~(FkCk(x)) >_ U, a positive constant. The 

bounded distortion property (A.III) gives 

1 c 
P(FkCk(x)) <- dFk(x  ~ )  <-~p(FkCk(x))  , 

c-">(ck(x)) < 
1 - JFk(x)  - 

The Lemma is proved. | 

We now prove the claim. 

The upper bound £ n l  _< K follows from Lemma 2.2, writing 

(1) 
1 

~ n l ( X )  : E Jfn(x'~) ~ C E 
x'EF-nx xlEF-nx 

P(Cn(Z')) <_ C" 

This concludes the proof of the Lemma. 

3. P r o o f  of  t h e  T h e o r e m s  

Let us first quote a theorem with two corollaries that give our Main Theorem 

and Central Limit Theorem for an abstract tower. These are proved in a com- 

panion paper which considers a more general setting, in particular non-H61der 

smoothness. However, the reader may remark that in the Hhlder setting, these 

facts essentially reduce to L.-S. Young's abstract results [Y1], after taking care 

of the following technicalities: 

• We have a "Markov rather than a Bernoulli picture": the returns are not 

to Ao, but to finitely many elements B1, • • •, Bp C A O. 

• Our return times are not lower bounded by an arbitrary a priori constant. 

• The tower is not aperiodic. 

THEOREM 3.1 ([BuMa]): Let ( A, F, P, do) be a tower system satisfying (A.I-IV). 
Let £. be the transfer operator associated to it. 

Then, i f  it is a P-a.c.i.m., there exist an integer 1 <_ p < oo, a decomposition 
A = IIP - 1 T k A  (mod ~) (FP(A,)  .k',) and a function h, E L ~ ( A , )  such k3k=0 ~ * ~- 

that, for any c2 : A, -+ R bounded with K(~)  < oo, 

for all n >_ O. Here /L  = p"/~ • l a , ,  K(~)  is the supremum of the Lipschitz 

constants, w.r.t, do, of the restrictions 99]Ai,j. 
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The sequence (Un)n_>l depends on (F,/ ,)  and goes to zero with a speed which 

can be made explicit: 

1. ifc~n(9) = O(p n) for some p < 1, then un = 0 ( ~  n) for some n < 1; 

2. i f  COn(g) = O(n -a)  for some ~ > 1, then Un = O(n-(a-1)) ;  

3. ifwn(g) = O(e -n~) for some 0 < a < 1, then un = O(e - ~ - ~ )  for arb/trary 

e > 0 .  

COROLLARY 3.2 ([BuMa]): In the same situation, we have that for all ~, ¢ E 

L ~ ( A , )  with K ( ~ )  < e~, 

f A ~ o F n ' ¢ d P -  f a~dp f CdP <_ (ll~ll~ + h'(~))llCtlLl(~.)'Un 

for all n >_ 0 for the same sequence (Un)n>_l as above. 

COROLLARY 3.3 ([BuMa]): Assuming additionally tha t  ~ n > l  un < co, we have 

the Central Limit  Theorem for all functions ~ bounded and do-Lipschitz. 

To deduce our Main Theorem and our Central  Limit Theorem, it is enough 

to first lift the ergodic u-a.c.i.m. # to A using Proposi t ion 2.1 and make the 

following remark. If  ~, ¢ :  X -+ R are as in the Main Theorem, then ~ o 7r is 

7-HSlder continuous and ¢ o 7r E L ~ .  Finally, note tha t  the integrals over A 

involving these lifted functions are equal to the integrals in the Main Theorem. 

For instance, 

by 7 r o F  = T o a "  and 7r,/; = #. 
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